Introduction
Maxillofacial fractures are commonly fixed using titanium mini plates because they are strong, easy to handle, and are not prone to dimensional changes [1,2]. However, fracture fixation using titanium plates present some disadvantages, including potential difficulties associated with the subsequent removal surgery, facial growth [3,4], thermal sensitivity [5,6], and plate migration [7,8], ultimately leading to the development of resorbable bone fixation devices as a trend.

Bioresorbable plates are designed to be absorbed by the surrounding tissue through chemical interactions; therefore, negative foreign body reactions and infection throughout the resorption process are theoretically possible [5]. However, there are little complications involved and it is used by clinicians as a major device [9,10].

This report presents a case of infection, following zygomatic fracture fixation using a resorbable plate, suspected of being caused by the resorption process.

Presentation of Case

In June 2014, a 58-year-old female patient who did not present any noteworthy past medical condition was referred to our division of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital, Takamatsu, Kagawa, Japan by a general dental practitioner because of swelling.
in the left cheek. Five months earlier, the patient underwent surgery to fit a Lactosorb® 1.5 resorbable fixation system (Lorenz Surgical, Jacksonville, FL, USA) to fix a zygomatic bone fracture at another general hospital. The patient never suffered any discomfort or presented any problems in the operative site before the fracture. Osteosynthesis was achieved by a fixation technique using three points along to the orbital rim, the frontozygomatic suture, and the zygomaticomaxillary buttress. During her first visit to the general dental practitioner, an intraoral examination revealed the presence of pus, discharged from the gingivobuccal area (Figure 1). Furthermore, a probe showed that the bone could be easily reached. A maxillofacial computed tomographic scan taken during the first visit showed as welling of the soft tissue next to the left maxillary sinus and a maxillary sinusitis. In addition, the plate at the zygomaticomaxillary buttress showed bone resorption surrounding the plate and the screws (Figure 2).

These clinical symptoms did not improve after initial treatment with Clarithromycin for 2 weeks, followed by Cefcapene pivoxil hydrochloride hydrate for 2 weeks together with continuous local irrigation. Based on these symptoms the patient was diagnosed with an infection caused by the fitted resorbable plate and screw, and the full removal of biomaterials was recommended. The patient was operated to remove the plate and the screws under local anesthesia. The operation involved a vestibular incision on the left side of the mandible to locate and remove the free resorbed plate and the screws on the buttress. In addition, the operative team cleaned the area of bone resorption surrounding the bioresorbable plate and the maxillary sinus front wall for abscess formation of the maxillary sinus (Figure 3). During the operation, we took samples from the affected area; *Streptococcus mitis* and anaerobic bacteria were cultured from these samples. The patient reported an immediate relief of the symptoms after the operation, and no evidence of infection was detected after 3 months of follow-up.

Measurement of the Molecular Weight

To measure the molecular weight (Mw) of the extracted plate and screws, they were dissolved in tetrahydrofuran. Gel permeation chromatography using a TOSOH Build-up GPC system 8020 and a TOSOH Co, Japan) and a TSK-GELGMMHR-H (TOSOH Co, Japan) was used to estimate the molecular weight. This technique is able to separate polymers based on their size. Polystyrene (SM-105 by Showa Denko Co, Japan) was used for Mw calibration. For comparative purposes, the molecular weight of an intact Lactosorb® plate and screws were also measured following the same protocol.

The average molecular weight (Mn) was calculated using the following equation:

\[
Mn = \frac{\sum (Mi \cdot Ni)}{\sum Ni}
\]

<table>
<thead>
<tr>
<th>No.</th>
<th>Specimen name</th>
<th>Number average molecular weight</th>
<th>Mn pace of decrease (%)</th>
<th>Weight average molecular weight</th>
<th>Mw pace of decrease (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intact screw</td>
<td>(4.74 \times 10^4)</td>
<td>1.21 (\times 10^5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Intact plate</td>
<td>(4.81 \times 10^4)</td>
<td>1.16 (\times 10^5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Removal screw</td>
<td>(2.01 \times 10^4)</td>
<td>58</td>
<td>(5.27 \times 10^4)</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>Removal plate</td>
<td>(2.28 \times 10^4)</td>
<td>53</td>
<td>(5.36 \times 10^4)</td>
<td>54</td>
</tr>
</tbody>
</table>
Where M_i represents the molecular weight and N_i the number of numerators of the polymer.

The weighted average molecular weight (M_w) was calculated using the following equation:

$$M_w = \frac{\sum M_i N_i}{\sum N_i}$$

The plate removed 5 months after the initial surgery showed an average molecular weight and a weighted average molecular weight of 2.28×10^5 and 5.36×10^4, respectively. This represents a 53% decrease in M_n and a 54% decrease in M_w compared with an intact plate. M_n and M_w of the two screws removed were 2.01×10^5 and 2.19×10^4, and 5.27×10^4 and 5.59×10^4, respectively. These values indicated that M_n decreased by 58% and 54% for the first and second screw, respectively, and M_w had decreased by 56% and 54% compared with intact screws (Table 1).

Discussion

Resorbable Osteosynthesis is systems were well developed to replace titanium fixation systems in craniofacial, oral, maxillofacial, plastic, and reconstructive surgery [1,2]. The resorbable materials used are ideally able to meet the biomechanical demands and to provide enough initial strength; however, these materials are able to degrade in a predictable manner throughout the healing process, providing sufficient strength and biomechanical stability to ensure the full healing of the fractured section. This resorption process has the added advantage of eliminating the need to remove the plate or the screws because no deleterious bodily response is associated with the presence of these materials or the resorption process [11].

The resorbable materials are designed to undergo a biphasic degradation process, including an early degradation step via hydrolysis of ester bonds [9,12]. The resulting degradation products subsequently crystallize and undergo a secondary hydrolysis, which strongly determines the rate of degradation of the material [12]. Throughout this process, the molecular weight of the material progressively decreases to eventually disappear. This degradation process is associated with a decrease in polymer strength [11], a reduction in molecular weight, and strength and mass loss. The implants lose the clinical biomechanical properties long before the loss of a significant amount of mass. The final end products of this degradation process, CO$_2$ and H$_2$O, are ultimately metabolized by the liver [9]. In this case, a LactoSorb (Lorenz/Biotem Inc.) bioresorbable system was used, which was composed by a substantially amorphous linear copolymer and consisted of 82% PLLA and 18% PGA. This material is able to retain 70% of its initial strength for the first 6–8 weeks, and it has been reported to dissolve entirely within the first year [13]. In this case, the patient had healed well after 5 months, and the bioresorbable system appeared to be efficient as Osteosynthesis material. However, bone resorption was observed around the bioresorbable plate and the screws fitted to the zygomatic and the maxillary bones. Inflammation could be expected for those cases where the degradation rate is too high and debris particles are produced faster than the body can tolerate [14]. The strong inflammatory reaction in the implantation site observed in this case was possibly caused by an increase in degradation products. This degradation probably caused the disintegration of the implanted materials, leading to the infiltration of the polymer into the adjacent tissues, overwhelming local clearance mechanisms. The molecular weight of the removed plate was 53% lower (58 and 52% lower for the screws) compared with intact plates, indicating that the absorption of the Osteosynthesis material had progressed as expected. The severe inflammation reaction observed could have led to perimplant osteolysis. In addition, the mobility of the plate and the screw as a result of the bone resorption could have further exacerbated the maxillary infection. A buccal buttress requires an occlusal stress. Resorption of a plate progresses 5 months postoperatively and the plate strength decreases. Because an occlusal force is recovered 2 months postoperatively for zygomatic fractures [15], it may lead to instability of a plate by a strong occlusal stress. Therefore, during zygomatic fracture treatment, we have to consider buccal buttress of the resorptive plate in which strength temporarily reduces. To prevent the plate surge by an incongruity, it is required to firmly fit a plate to a bone.

This plate system has been widely and successfully used as an Osteosynthesis material [9]. In this case, the same plate system was used for other sites, such as the orbital rim and the zygomaticofrontal suture; however, bone resorption was only observed in the zygomaticomaxillary suture, connected to the side of the oral cavity. The presence of an oral Streptococcus sp. infection suggests an oral origin of the infection. This bacterial infection may have promoted the resorption of the bone surrounding the plate system, worsening the situation. Although inflammation by a foreign-body reaction occurs, there is generally little bacterial infection at areas other than the oral cavity. Because the oral-cavity is always exposed to the oral origin bacteria, we should be cautious regarding infections occurring at a relatively early stage.

Conclusions

Here postoperative complications related to the biodegradation of resorbable materials are reported. This study shows that there is a need to widen our understanding on the characteristics and use of these resorbable materials based on clinical observations.

References

